What Makes the Muscle Twitch: Motor System Connectivity and TMS-Induced Activity.
نویسندگان
چکیده
Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) evokes several volleys of corticospinal activity. While the earliest wave (D-wave) originates from axonal activation of cortico-spinal neurons (CSN), later waves (I-waves) result from activation of mono- and polysynaptic inputs to CSNs. Different coil orientations preferentially stimulate cortical elements evoking different outputs: latero-medial-induced current (LM) elicits D-waves and short-latency electromyographic responses (MEPs); posterior-anterior current (PA) evokes early I-waves. Anterior-posterior current (AP) is more variable and tends to recruit later I-waves, featuring longer onset latencies compared with PA-TMS. We tested whether the variability in response to AP-TMS was related to functional connectivity of the stimulated M1 in 20 right-handed healthy subjects who underwent functional magnetic resonance imaging while performing an isometric contraction task. The MEP-latency after AP-TMS (relative to LM-TMS) was strongly correlated with functional connectivity between the stimulated M1 and a network involving cortical premotor areas. This indicates that stronger premotor-M1 connectivity increases the probability that AP-TMS recruits shorter latency input to CSNs. In conclusion, our data strongly support the hypothesis that TMS of M1 activates distinct neuronal pathways depending on the orientation of the stimulation coil. Particularly, AP currents seem to recruit short latency cortico-cortical projections from premotor areas.
منابع مشابه
Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue
Transcranial magnetic (TMS) and motor point stimulation have been used to determine voluntary activation (VA). However, very few studies have directly compared the two stimulation techniques for assessing VA of the elbow flexors. The purpose of this study was to compare TMS and motor point stimulation for assessing VA in non-fatigued and fatigued elbow flexors. Participants performed a fatigue ...
متن کاملThe influence of corticospinal activity on TMS-evoked activity and connectivity in healthy subjects: A TMS-EEG study
Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) can be used to analyze cortical reactivity and connectivity. However, the effects of corticospinal and peripheral muscle activity on TMS-evoked potentials (TEPs) are not well understood. The aim of this paper is to evaluate the relationship between cortico-spinal activity, in the form of peripheral motor-evoked po...
متن کاملUse of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
Force responses to transcranial magnetic stimulation of motor cortex (TMS) during exercise provide information about voluntary activation and contractile properties of the muscle. Here, TMS-generated twitches and muscle relaxation during the TMS-evoked silent period were measured in fresh, heated, and fatigued muscle. Subjects performed isometric contractions of elbow flexors in two studies. To...
متن کاملEarly neural responses to strength training.
The neural adaptations that accompany strength training have yet to be fully determined. Here we sought to address this topic by testing the idea that strength training might share similar mechanisms with some forms of motor learning. Since ballistic motor learning is accompanied by a shift in muscle twitches induced by transcranial magnetic stimulation (TMS) toward the training direction, we s...
متن کاملThe effect of HI-6 on reversal or prevention of changes induced by paraoxon in the function of Chicken biventer cervices nerve-muscle preparation
Paralysis of skeletal muscles, which can lead to paralysis of respiratory muscles and death, is one of the most toxic effects of organophosphates, and oximes are almost the only known antidotes that can reverse or prevent such toxic effects. In the present research work, possible reversal or preventive effect of different concentrations of the relatively new oxime (HI-6) on changes induced by p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 25 9 شماره
صفحات -
تاریخ انتشار 2015